Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52.085
Filtrar
1.
Sci Rep ; 14(1): 8391, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600238

RESUMO

Friedreich's ataxia is a degenerative and progressive multisystem disorder caused by mutations in the highly conserved frataxin (FXN) gene that results in FXN protein deficiency and mitochondrial dysfunction. While gene therapy approaches are promising, consistent induction of therapeutic FXN protein expression that is sub-toxic has proven challenging, and numerous therapeutic approaches are being tested in animal models. FXN (hFXN in humans, mFXN in mice) is proteolytically modified in mitochondria to produce mature FXN. However, unlike endogenous hFXN, endogenous mFXN is further processed into N-terminally truncated, extra-mitochondrial mFXN forms of unknown function. This study assessed mature exogenous hFXN expression levels in the heart and liver of C57Bl/6 mice 7-10 months after intravenous administration of a recombinant adeno-associated virus encoding hFXN (AAVrh.10hFXN) and examined the potential for hFXN truncation in mice. AAVrh.10hFXN induced dose-dependent expression of hFXN in the heart and liver. Interestingly, hFXN was processed into truncated forms, but found at lower levels than mature hFXN. However, the truncations were at different positions than mFXN. AAVrh.10hFXN induced mature hFXN expression in mouse heart and liver at levels that approximated endogenous mFXN levels. These results suggest that AAVrh.10hFXN can likely induce expression of therapeutic levels of mature hFXN in mice.


Assuntos
60529 , Ataxia de Friedreich , Humanos , Animais , Camundongos , Coração , Processamento de Proteína Pós-Traducional , Fígado/metabolismo , Terapia Genética , Proteínas de Ligação ao Ferro/metabolismo , Ataxia de Friedreich/terapia , Ataxia de Friedreich/tratamento farmacológico
2.
J Am Chem Soc ; 146(15): 10240-10245, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578222

RESUMO

Cellular compartments formed by biomolecular condensation are widespread features of cell biology. These organelle-like assemblies compartmentalize macromolecules dynamically within the crowded intracellular environment. However, the intermolecular interactions that produce condensed droplets may also create arrested states and potentially pathological assemblies such as fibers, aggregates, and gels through droplet maturation. Protein liquid-liquid phase separation is a metastable process, so maturation may be an intrinsic property of phase-separating proteins, where nucleation of different phases or states arises in supersaturated condensates. Here, we describe the formation of both phase-separated droplets and proteinaceous fibers driven by a de novo designed polypeptide. We characterize the formation of supramolecular fibers in vitro and in bacterial cells. We show that client proteins can be targeted to the fibers in cells using a droplet-forming construct. Finally, we explore the interplay between phase separation and fiber formation of the de novo polypeptide, showing that the droplets mature with a post-translational switch to largely ß conformations, analogous to models of pathological phase separation.


Assuntos
Fenômenos Bioquímicos , Proteínas , Humanos , Proteínas/química , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Conformação Molecular
3.
J Am Chem Soc ; 146(15): 10621-10631, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38584362

RESUMO

Lysine dimethylation (Kme2) is a crucial post-translational modification (PTM) that regulates biological processes and is implicated in diseases. There is significant interest in globally identifying these methylation marks. Unfortunately, this remains challenging due to the lack of robust technologies for selectively labeling Kme2. To address this, we present a chemical method named tertiary amine coupling by oxidation (TACO). This method selectively modifies Kme2 to aldehydes using Selectfluor and a base. The resulting aldehydes from Kme2 were then functionalized using reductive amination, thiolamine, and oxime chemistry. We successfully demonstrated the versatility of TACO in selectively labeling Kme2 peptides and proteins in complex cell lysate mixtures with varying payloads, including affinity tags and fluorophores. We further showed the application of TACO chemistry for the identification of Kme2 sites at a single-molecule level by fluorosequencing. We discovered novel 30 Kme2 sites, in addition to previously known 5 Kme2 sites, by proteomics analysis of TACO-modified nuclear extracts. Our work establishes a unique strategy for covalently modifying Kme2, facilitating the global identification of low-abundance Kme2-PTMs and their sites within complex cell lysate mixtures.


Assuntos
Lisina , Processamento de Proteína Pós-Traducional , Lisina/química , Proteínas/química , Aminas , Aldeídos
4.
Biochem Soc Trans ; 52(2): 831-848, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38600022

RESUMO

Homeostasis of the endoplasmic reticulum (ER) is critical for growth, development, and stress responses. Perturbations causing an imbalance in ER proteostasis lead to a potentially lethal condition known as ER stress. In ER stress situations, cell-fate decisions either activate pro-life pathways that reestablish homeostasis or initiate pro-death pathways to prevent further damage to the organism. Understanding the mechanisms underpinning cell-fate decisions in ER stress is critical for crop development and has the potential to enable translation of conserved components to ER stress-related diseases in metazoans. Post-translational modifications (PTMs) of proteins are emerging as key players in cell-fate decisions in situations of imbalanced ER proteostasis. In this review, we address PTMs orchestrating cell-fate decisions in ER stress in plants and provide evidence-based perspectives for where future studies may focus to identify additional PTMs involved in ER stress management.


Assuntos
Arabidopsis , Estresse do Retículo Endoplasmático , Processamento de Proteína Pós-Traducional , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo
5.
Cell Rep ; 43(4): 114091, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607914

RESUMO

Nitric oxide (NO) is a gasotransmitter required in a broad range of mechanisms controlling plant development and stress conditions. However, little is known about the specific role of this signaling molecule during lipid storage in the seeds. Here, we show that NO is accumulated in developing embryos and regulates the fatty acid profile through the stabilization of the basic/leucine zipper transcription factor bZIP67. NO and nitro-linolenic acid target and accumulate bZIP67 to induce the downstream expression of FAD3 desaturase, which is misregulated in a non-nitrosylable version of the protein. Moreover, the post-translational modification of bZIP67 is reversible by the trans-denitrosylation activity of peroxiredoxin IIE and defines a feedback mechanism for bZIP67 redox regulation. These findings provide a molecular framework to control the seed fatty acid profile caused by NO, and evidence of the in vivo functionality of nitro-fatty acids during plant developmental signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica , Ácidos Graxos , Óxido Nítrico , Peroxirredoxinas , Ácidos Graxos/metabolismo , Proteínas de Arabidopsis/metabolismo , Peroxirredoxinas/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Óxido Nítrico/metabolismo , Regulação da Expressão Gênica de Plantas , Sementes/metabolismo , Metabolismo dos Lipídeos , Processamento de Proteína Pós-Traducional
6.
PLoS Pathog ; 20(4): e1012147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620039

RESUMO

Post-transcriptional regulation by small RNAs and post-translational modifications (PTM) such as lysine acetylation play fundamental roles in physiological circuits, offering rapid responses to environmental signals with low energy consumption. Yet, the interplay between these regulatory systems remains underexplored. Here, we unveil the cross-talk between sRNAs and lysine acetylation in Streptococcus mutans, a primary cariogenic pathogen known for its potent acidogenic virulence. Through systematic overexpression of sRNAs in S. mutans, we identified sRNA SmsR1 as a critical player in modulating acidogenicity, a key cariogenic virulence feature in S. mutans. Furthermore, combined with the analysis of predicted target mRNA and transcriptome results, potential target genes were identified and experimentally verified. A direct interaction between SmsR1 and 5'-UTR region of pdhC gene was determined by in vitro binding assays. Importantly, we found that overexpression of SmsR1 reduced the expression of pdhC mRNA and increased the intracellular concentration of acetyl-CoA, resulting in global changes in protein acetylation levels. This was verified by acetyl-proteomics in S. mutans, along with an increase in acetylation level and decreased activity of LDH. Our study unravels a novel regulatory paradigm where sRNA bridges post-transcriptional regulation with post-translational modification, underscoring bacterial adeptness in fine-tuning responses to environmental stress.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Processamento de Proteína Pós-Traducional , Streptococcus mutans , Streptococcus mutans/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/patogenicidade , Acetilação , Virulência , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , Cárie Dentária/microbiologia , Cárie Dentária/metabolismo , Animais , Camundongos , Humanos , Pequeno RNA não Traduzido/metabolismo , Pequeno RNA não Traduzido/genética
7.
Sci Rep ; 14(1): 9141, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644371

RESUMO

Tuberculosis remains a large health threat, despite the availability of the tuberculosis vaccine, BCG. As BCG efficacy gradually decreases from adolescence, BCG-Prime and antigen-booster may be an efficient strategy to confer vaccine efficacy. Mycobacterial DNA-binding protein 1 (MDP1, namely Rv2986c, hupB or HU) is a major Mycobacterium tuberculosis protein that induces vaccine-efficacy by co-administration with CpG DNA. To produce MDP1 for booster-vaccine use, we have created recombinant MDP1 produced in both Escherichia coli (eMDP1) and Mycolicibacterium smegmatis (mMDP1), an avirulent rapid-growing mycobacteria. We tested their immunogenicity by checking interferon (IFN)-gamma production by stimulated peripheral blood cells derived from BCG-vaccinated individuals. Similar to native M. tuberculosis MDP1, we observed that most lysin resides in the C-terminal half of mMDP1 are highly methylated. In contrast, eMDP1 had less post-translational modifications and IFN-gamma stimulation. mMDP1 stimulated the highest amount of IFN-gamma production among the examined native M. tuberculosis proteins including immunodominant MPT32 and Antigen 85 complex. MDP1-mediated IFN-gamma production was more strongly enhanced when combined with a new type of CpG DNA G9.1 than any other tested CpG DNAs. Taken together, these results suggest that the combination of mMDP1 and G9.1 possess high potential use for human booster vaccine against tuberculosis.


Assuntos
Vacina BCG , Proteínas de Bactérias , Proteínas de Ligação a DNA , Interferon gama , Mycobacterium tuberculosis , Processamento de Proteína Pós-Traducional , Humanos , Interferon gama/metabolismo , Proteínas de Bactérias/imunologia , Vacina BCG/imunologia , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Mycobacterium tuberculosis/imunologia , Proteínas Recombinantes/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Tuberculose/prevenção & controle , Tuberculose/imunologia , Ilhas de CpG , Mycobacterium smegmatis/imunologia , Mycobacterium smegmatis/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Feminino
8.
Cell Mol Life Sci ; 81(1): 193, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652325

RESUMO

The acetylation of α-tubulin on lysine 40 is a well-studied post-translational modification which has been associated with the presence of long-lived stable microtubules that are more resistant to mechanical breakdown. The discovery of α-tubulin acetyltransferase 1 (ATAT1), the enzyme responsible for lysine 40 acetylation on α-tubulin in a wide range of species, including protists, nematodes, and mammals, dates to about a decade ago. However, the role of ATAT1 in different cellular activities and molecular pathways has been only recently disclosed. This review comprehensively summarizes the most recent knowledge on ATAT1 structure and substrate binding and analyses the involvement of ATAT1 in a variety of cellular processes such as cell motility, mitosis, cytoskeletal organization, and intracellular trafficking. Finally, the review highlights ATAT1 emerging roles in human diseases and discusses ATAT1 potential enzymatic and non-enzymatic roles and the current efforts in developing ATAT1 inhibitors.


Assuntos
Acetiltransferases , Proteínas dos Microtúbulos , Tubulina (Proteína) , Humanos , Acetiltransferases/metabolismo , Acetiltransferases/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Animais , Processamento de Proteína Pós-Traducional , Acetilação , Microtúbulos/metabolismo , Mitose , Movimento Celular , Neoplasias/patologia , Neoplasias/enzimologia , Neoplasias/metabolismo , Citoesqueleto/metabolismo
9.
MAbs ; 16(1): 2341641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38652517

RESUMO

Peptide mapping with mass spectrometry (MS) is an important tool for protein characterization in the biopharmaceutical industry. Historically, peptide mapping monitors post-translational modifications (PTMs) of protein products and process intermediates during development. Multi-attribute monitoring (MAM) methods have been used previously in commercial release and stability testing panels to ensure control of selected critical quality attributes (CQAs). Our goal is to use MAM methods as part of an overall analytical testing strategy specifically focused on CQAs, while removing or replacing historical separation methods that do not effectively distinguish CQAs from non-CQAs due to co-elution. For example, in this study, we developed a strategy to replace a profile-based ion-exchange chromatography (IEC) method using a MAM method in combination with traditional purity methods to ensure control of charge variant CQAs for a commercial antibody (mAb) drug product (DP). To support this change in commercial testing strategy, the charge variant CQAs were identified and characterized during development by high-resolution LC-MS and LC-MS/MS. The charge variant CQAs included PTMs, high molecular weight species, and low molecular weight species. Thus, removal of the IEC method from the DP specification was achieved using a validated LC-MS MAM method on a QDa system to directly measure the charge variant PTM CQAs in combination with size exclusion chromatography (SE-HPLC) and capillary electrophoresis (CE-SDS) to measure the non-PTM charge variant CQAs. Bridging data between the MAM, IEC, and SE-HPLC methods were included in the commercial marketing application to justify removing IEC from the DP specification. We have also used this MAM method as a test for identity to reduce the number of QC assays. This strategy has received approvals from several health authorities.


Assuntos
Anticorpos Monoclonais , Mapeamento de Peptídeos , Cromatografia por Troca Iônica/métodos , Anticorpos Monoclonais/química , Mapeamento de Peptídeos/métodos , Humanos , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem/métodos , Controle de Qualidade
10.
World J Microbiol Biotechnol ; 40(6): 179, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668807

RESUMO

Core histones in the nucleosome are subject to a wide variety of posttranslational modifications (PTMs), such as methylation, phosphorylation, ubiquitylation, and acetylation, all of which are crucial in shaping the structure of the chromatin and the expression of the target genes. A putative histone methyltransferase LaeA/Lae1, which is conserved in numerous filamentous fungi, functions as a global regulator of fungal growth, virulence, secondary metabolite formation, and the production of extracellular glycoside hydrolases (GHs). LaeA's direct histone targets, however, were not yet recognized. Previous research has shown that LaeA interacts with core histone H2B. Using S-adenosyl-L-methionine (SAM) as a methyl group donor and recombinant human histone H2B as the substrate, it was found that Penicillium oxalicum LaeA can transfer the methyl groups to the C-terminal lysine (K) 108 and K116 residues in vitro. The H2BK108 and H2BK116 sites on recombinant histone correspond to P. oxalicum H2BK122 and H2BK130, respectively. H2BK122A and H2BK130A, two mutants with histone H2B K122 or K130 mutation to alanine (A), were constructed in P. oxalicum. The mutants H2BK122A and H2BK130A demonstrated altered asexual development and decreased extracellular GH production, consistent with the findings of the laeA gene deletion strain (ΔlaeA). The transcriptome data showed that when compared to wild-type (WT) of P. oxalicum, 38 of the 47 differentially expressed (fold change ≥ 2, FDR ≤ 0.05) genes that encode extracellular GHs showed the same expression pattern in the three mutants ΔlaeA, H2BK122A, and H2BK130A. The four secondary metabolic gene clusters that considerably decreased expression in ΔlaeA also significantly decreased in H2BK122A or H2BK130A. The chromatin of promotor regions of the key cellulolytic genes cel7A/cbh1 and cel7B/eg1 compacted in the ΔlaeA, H2BK122A, and H2BK130A mutants, according to the results of chromatin accessibility real-time PCR (CHART-PCR). The chromatin accessibility index dropped. The histone binding pocket of the LaeA-methyltransf_23 domain is compatible with particular histone H2B peptides, providing appropriate electrostatic and steric compatibility to stabilize these peptides, according to molecular docking. The findings of the study demonstrate that H2BK122 and H2BK130, which are histone targets of P. oxalicum LaeA in vitro, are crucial for fungal conidiation, the expression of gene clusters encoding secondary metabolites, and the production of extracellular GHs.


Assuntos
Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Glicosídeo Hidrolases , Histonas , Lisina , Família Multigênica , Penicillium , Metabolismo Secundário , Penicillium/genética , Penicillium/enzimologia , Penicillium/metabolismo , Penicillium/crescimento & desenvolvimento , Histonas/metabolismo , Histonas/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Metabolismo Secundário/genética , Lisina/metabolismo , Lisina/biossíntese , Processamento de Proteína Pós-Traducional , Metilação , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Reprodução Assexuada/genética , Humanos
11.
Cell Rep ; 43(4): 114034, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38568808

RESUMO

Escape from the bacterial-containing vacuole (BCV) is a key step of Shigella host cell invasion. Rab GTPases subverted to in situ-formed macropinosomes in the vicinity of the BCV have been shown to promote its rupture. The involvement of the BCV itself has remained unclear. We demonstrate that Rab35 is non-canonically entrapped at the BCV. Stimulated emission depletion imaging localizes Rab35 directly on the BCV membranes before vacuolar rupture. The bacterial effector IcsB, a lysine Nε-fatty acylase, is a key regulator of Rab35-BCV recruitment, and we show post-translational acylation of Rab35 by IcsB in its polybasic region. While Rab35 and IcsB are dispensable for the first step of BCV breakage, they are needed for the unwrapping of damaged BCV remnants from Shigella. This provides a framework for understanding Shigella invasion implicating re-localization of a Rab GTPase via its bacteria-dependent post-translational modification to support the mechanical unpeeling of the BCV.


Assuntos
Proteínas de Bactérias , Processamento de Proteína Pós-Traducional , Shigella , Vacúolos , Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/metabolismo , Humanos , Shigella/metabolismo , Proteínas de Bactérias/metabolismo , Vacúolos/metabolismo , Vacúolos/microbiologia , Células HeLa
12.
Biochemistry (Mosc) ; 89(Suppl 1): S180-S204, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621750

RESUMO

In many proteins, supplementary metal-binding centers appear under stress conditions. They are known as aberrant or atypical sites. Physico-chemical properties of proteins are significantly changed after such metal binding, and very stable protein aggregates are formed, in which metals act as "cross-linking" agents. Supplementary metal-binding centers in proteins often arise as a result of posttranslational modifications caused by reactive oxygen and nitrogen species and reactive carbonyl compounds. New chemical groups formed as a result of these modifications can act as ligands for binding metal ions. Special attention is paid to the role of cysteine SH-groups in the formation of supplementary metal-binding centers, since these groups are the main target for the action of reactive species. Supplementary metal binding centers may also appear due to unmasking of amino acid residues when protein conformation changing. Appearance of such centers is usually considered as a pathological process. Such unilateral approach does not allow to obtain an integral view of the phenomenon, ignoring cases when formation of metal complexes with altered proteins is a way to adjust protein properties, activity, and stability under the changed redox conditions. The role of metals in protein aggregation is being studied actively, since it leads to formation of non-membranous organelles, liquid condensates, and solid conglomerates. Some proteins found in such aggregates are typical for various diseases, such as Alzheimer's and Huntington's diseases, amyotrophic lateral sclerosis, and some types of cancer.


Assuntos
Metais , Estresse Oxidativo , Metais/química , Metais/metabolismo , Oxirredução , Processamento de Proteína Pós-Traducional
13.
Eur J Pharmacol ; 971: 176549, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561104

RESUMO

Synthetic cannabinoid receptor agonists (SCRAs) remain one the largest classes of new psychoactive substances, and are increasingly associated with severe adverse effects and death compared to the phytocannabinoid Δ9-tetrahydrocannabinol (THC). In the attempt to circumvent the rapid emergence of novel SCRAs, several nations have implemented 'generic' legislations, or 'class-wide' bans based on common structural scaffolds. However, this has only encouraged the incorporation of new chemical entities, including distinct core and linker structures, for which there is a dearth of pharmacological data. The current study evaluated five emergent OXIZID SCRAs for affinity and functional activity at the cannabinoid CB1 receptor (CB1) in HEK 293 cells, as well as pharmacological equivalence with THC in drug discrimination in mice. All OXIZID compounds behaved as agonists in Gαi protein activation and ß-arrestin 2 translocation assays, possessing low micromolar affinity at CB1. All ligands also substituted for THC in drug discrimination, where potencies broadly correlated with in vitro activity, with the methylcyclohexane analogue BZO-CHMOXIZID being the most potent. Notably, MDA-19 (BZO-HEXOXIZID) exhibited partial efficacy in vitro, generating an activity profile most similar to that of THC, and partial substitution in vivo. Overall, the examined OXIZIDs were comparatively less potent and efficacious than previous generations of SCRAs. Further toxicological data will elucidate whether the moderate cannabimimetic activity for this series of SCRAs will translate to severe adverse health effects as seen with previous generations of SCRAs.


Assuntos
Agonistas de Receptores de Canabinoides , Processamento de Proteína Pós-Traducional , Humanos , Camundongos , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Células HEK293 , Receptores de Canabinoides/metabolismo , Ligantes , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
14.
Anal Chim Acta ; 1304: 342543, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637052

RESUMO

BACKGROUND: The non-enzymatic glycation of proteins and their advanced glycation end products (AGEs) are associated with protein transformations such as in the development of diseases and biopharmaceutical storage. The characterization of heavily glycated proteins at the intact level is of high interest as it allows to describe co-occurring protein modifications. However, the high heterogeneity of glycated protein makes this process challenging, and novel methods are required to accomplish this. RESULTS: In this study, we investigated two novel LC-HRMS methods to study glycated reference proteins at the intact protein level: low-flow hydrophilic-interaction liquid chromatography (HILIC) and native size-exclusion chromatography (SEC). Model proteins were exposed to conditions that favored extensive glycation and the formation of AGEs. After glycation, complicated MS spectra were observed, along with a sharply reduced signal response, possibly due to protein denaturation and the formation of aggregates. When using HILIC-MS, the glycated forms of the proteins could be resolved based on the number of reducing monosaccharides. Moreover, some positional glycated isomers were separated. The SEC-MS method under non-denaturing conditions provided insights into glycated aggregates but offered only a limited separation of glycated species based on molar mass. Overall, more than 25 different types of species were observed in both methods, differing in molar mass by 14-162 Da. 19 of these species have not been previously reported. SIGNIFICANCE: The proposed strategies show great potential to characterize highly glycated intact proteins from native and denaturing perspectives and provide new opportunities for fast clinical diagnoses and investigating glycation-related diseases.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas , Espectrometria de Massas/métodos , Cromatografia Líquida , Cromatografia em Gel
15.
Plant Cell Rep ; 43(4): 111, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568247

RESUMO

Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant-microbe interactions. However, the complexity of plant-microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant-microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.


Assuntos
Interações Ervas-Drogas , Metais Pesados , Metais Pesados/toxicidade , Processamento de Proteína Pós-Traducional , Solo
16.
Nat Commun ; 15(1): 2813, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561336

RESUMO

CCCTC-binding factor (CTCF), a ubiquitously expressed and highly conserved protein, is known to play a critical role in chromatin structure. Post-translational modifications (PTMs) diversify the functions of protein to regulate numerous cellular processes. However, the effects of PTMs on the genome-wide binding of CTCF and the organization of three-dimensional (3D) chromatin structure have not been fully understood. In this study, we uncovered the PTM profiling of CTCF and demonstrated that CTCF can be O-GlcNAcylated and arginine methylated. Functionally, we demonstrated that O-GlcNAcylation inhibits CTCF binding to chromatin. Meanwhile, deficiency of CTCF O-GlcNAcylation results in the disruption of loop domains and the alteration of chromatin loops associated with cellular development. Furthermore, the deficiency of CTCF O-GlcNAcylation increases the expression of developmental genes and negatively regulates maintenance and establishment of stem cell pluripotency. In conclusion, these results provide key insights into the role of PTMs for the 3D chromatin structure.


Assuntos
Genoma , Processamento de Proteína Pós-Traducional , Fator de Ligação a CCCTC/metabolismo , Diferenciação Celular , Cromatina
17.
Methods Mol Biol ; 2797: 299-322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570469

RESUMO

Prior analysis of intact and modified protein forms (proteoforms) of KRAS4B isolated from cell lines and tumor samples by top-down mass spectrometry revealed the presence of novel posttranslational modifications (PTMs) and potential evidence of context-specific KRAS4B modifications. However, low endogenous proteoform signal resulted in ineffective characterization, making it difficult to visualize less abundant PTMs or perform follow-up PTM validation using standard proteomic workflows. The NCI RAS Initiative has developed a model system, whereby KRAS4B bearing an N-terminal FLAG tag can be stably expressed within a panel of cancer cell lines. Herein, we present a method for combining immunoprecipitation with complementary proteomic methods to directly analyze N-terminally FLAG-tagged KRAS4B proteoforms and PTMs. We provide detailed protocols for FLAG-KRAS4B purification, proteoform analysis by targeted top-down LC-MS/MS, and validation of abundant PTMs by bottom-up LC-MS/MS with example results.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Processamento de Proteína Pós-Traducional , 60705
18.
Biochem J ; 481(7): 515-545, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38572758

RESUMO

Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.


Assuntos
Peptídeo Hidrolases , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Peptídeo Hidrolases/metabolismo , Ubiquitinação , Processamento de Proteína Pós-Traducional , Ubiquitinas/genética , Ubiquitinas/metabolismo , Dano ao DNA , Endopeptidases/metabolismo , Instabilidade Genômica
19.
Signal Transduct Target Ther ; 9(1): 85, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575611

RESUMO

NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.


Assuntos
Proteínas Culina , Neoplasias , Humanos , Proteínas Culina/metabolismo , Ubiquitinas/genética , Ubiquitina-Proteína Ligases/metabolismo , Processamento de Proteína Pós-Traducional , Neoplasias/tratamento farmacológico , Neoplasias/genética
20.
J Transl Med ; 22(1): 382, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659022

RESUMO

Tumors are highly complex and heterogenous ecosystems where malignant cells interact with healthy cells and the surrounding extracellular matrix (ECM). Solid tumors contain large ECM deposits that can constitute up to 60% of the tumor mass. This supports the survival and growth of cancerous cells and plays a critical role in the response to immune therapy. There is untapped potential in targeting the ECM and cell-ECM interactions to improve existing immune therapy and explore novel therapeutic strategies. The most abundant proteins in the ECM are the collagen family. There are 28 different collagen subtypes that can undergo several post-translational modifications (PTMs), which alter both their structure and functionality. Here, we review current knowledge on tumor collagen composition and the consequences of collagen PTMs affecting receptor binding, cell migration and tumor stiffness. Furthermore, we discuss how these alterations impact tumor immune responses and how collagen could be targeted to treat cancer.


Assuntos
Colágeno , Matriz Extracelular , Imunoterapia , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Colágeno/metabolismo , Imunoterapia/métodos , Matriz Extracelular/metabolismo , Animais , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...